Asymmetric Certified Robustness via Feature-Convex Neural Networks – The Berkeley Artificial Intelligence Research Blog
Asymmetric Certified Robustness via Feature-Convex Neural Networks TLDR: We propose the asymmetric certified robustness problem, which requires certified robustness for only one class and reflects real-world adversarial scenarios. This focused setting allows us to introduce feature-convex classifiers, which produce closed-form and deterministic certified radii on the order of milliseconds. Figure 1. Illustration of feature-convex classifiers […]